Critical Graphs in Index Coding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex-splitting and Chromatic Index Critical Graphs

We study graphs which are critical with respect to the chromatic index. We relate these to the Overfull Conjecture and we study in particular their construction from regular graphs by subdividing an edge or by splitting a vertex. In this paper, we consider simple graphs (that is graphs which have no loops or multiple edges). An edge-colouring of a graph G is a map 4 : E(G) -+ cp, where cp is a ...

متن کامل

Chromatic-index-critical graphs of orders 13 and 14

A graph is chromatic-index-critical if it cannot be edge-coloured with ∆ colours (with ∆ the maximal degree of the graph), and if the removal of any edge decreases its chromatic index. The Critical Graph Conjecture stated that any such graph has odd order. It has been proved false and the smallest known counterexample has order 18 [18, 31]. In this paper we show that there are no chromatic-inde...

متن کامل

Graphs with smallest forgotten index

The forgotten topological index of a molecular graph $G$ is defined as $F(G)=sum_{vin V(G)}d^{3}(v)$, where $d(u)$ denotes the degree of vertex $u$ in $G$. The first through the sixth smallest forgotten indices among all trees, the first through the third smallest forgotten indices among all connected graph with cyclomatic number $gamma=1,2$, the first through<br /...

متن کامل

Wiener Index of Graphs in Terms of Eccentricities

The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.

متن کامل

Computing Szeged index of graphs on ‎triples

ABSTRACT Let ‎G=(V,E) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎V‎‎‎ ‎and ‎edge ‎set ‎‎‎E. ‎The Szeged index ‎of ‎‎G is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎G ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎If ‎‎‎‎S ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎V ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎S ‎of ‎size ‎3. ‎Then ‎we ‎define ‎t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal on Selected Areas in Communications

سال: 2015

ISSN: 0733-8716,1558-0008

DOI: 10.1109/jsac.2014.2384294